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Abstract9

Social systems often rely on institutions to solve problems such as social10

dilemmas. Here, we explore whether agents in these systems can use a social-11

choice mechanism to self-organize an institutional solution to a social dilemma.12

We find that, notwithstanding the existence of productive institutions, such13

self-organization can fail. Systems composed of rational agents succumb to a14

proliferation of possible equilbiria, many of which lead to inferior outcomes.15

Systems composed of small groups of adaptive agents are able to evolve effec-16

tive solutions, but as group size increases such solutions become far less likely.17

Given that social dilemmas lie at the heart of some of the most challenging18

social problems, such as global warming, these results suggest that alternative19

approaches to creating and maintaining useful institutional solutions may be20

needed.21



1 Introduction1

Social systems often confront conditions whereby an individual’s self-interest is at2

odds with society’s interest. Such social dilemmas arise in the context of many3

social challenges, including pollution, resource extraction, epidemic response, and4

the provision of public goods. Evidence from both small-scale societies and public5

goods experiments show that social dilemmas may be resolved through the emergence6

of ad hoc institutions that rely on peer enforcement to align individual with social7

incentives (Ostrom, 1990; Bowles and Gintis, 2011; Fehr and Schurtenberger, 2018;8

De Geest and Kingsley, 2021). There is no guarantee that such institutions will9

emerge and, if they do, that they will be socially productive (Abbink et al., 2017).10

Here, we explore the difficulty of developing socially productive institutions using11

prototypical social choice mechanisms (SCMs) akin to decentralized voting.12

The question we explore is whether social dilemmas can be resolved using a13

penalty-based institution where the key parameters of that institution are derived14

by allowing individuals to “vote” using various prototypical social choice mechanisms15

(SCMs). SCMs aggregate a set of individual choices into a single social choice that is16

imposed on all of the individuals in the group. Arrow (1950) showed that there is no17

SCM that can support a small set of seemingly reasonable desiderata. Notwithstand-18

ing this result, SCMs are often used for social choices—the ones we analyze below19

are motivated, in part, by current practice (Fehr and Williams, 2018). For exam-20

ple, international climate change agreements are often derived using SCM-equivalent21

mechanisms that allow any party to veto a potential agreement (Finus et al., 2005;22

Lal Pandey, 2014).23

Here, we explore the resolution of a social dilemma through the implementation24

of an institution that is determined by the choices, mediated by a SCM, of the25

individuals exposed to the dilemma. This approach is inspired by Ostrom (1990)’s26

work on “new institutionalism” and the evolution of self-organizing institutions to27

solve collective action problems in common pool resources. The work here provides28

an alternative framework by which to explore such phenomena.29

We consider systems of agents from both a rational and adaptive perspective.30
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The rational analysis explores the Nash equilibria associated with this system. The1

results of this analysis demonstrate that the successful resolution of a social dilemma2

may be more difficult than intuition suggests. We also explore a dynamic system3

whereby agents adapt their behavior driven by indirect forces that impact the system4

on evolutionary time scales. We find that under some conditions this adaptive system5

can discover institutions that effectively solve the underlying social dilemma. The6

above results replicate some key results from the experimental literature on public7

goods with peer punishment, where subjects do not always converge on socially8

optimal institutions (Chaudhuri, 2011).9

2 Public Goods, Institutions, and Social Choice10

Mechanisms11

We focus our analysis on a simple linear public goods game that captures the fun-12

damental notion of an N -person social dilemma (Fehr and Gächter, 2000). In this13

game, each of N agents must allocate an individual endowment between a private14

and public good (below, we normalize the total endowment each agent must allocate15

to 1.0). Each unit of the endowment held in the private good returns a value of 116

to the agent, while any endowments contributed to the public good get aggregated17

and α times this total is given to each agent, regardless of that agent’s contribution18

to the public good. Thus, the payoff to each agent is19

πi = (ei − ci) + α

(
ci +

∑
i 6=j

cj

)
where ei is agent i’s endowment and ci is their contribution to the public good.20

This scenario leads to a social dilemma when 1/N < α < 1, with the lower bound21

ensuring the potential of a social gain when everyone contributes to the public good22

(since Nα > 1) and the upper bound ensuring that a selfish individual has the23

incentive to never contribute to the public good (since α < 1). Thus, if agents24

only care about their own payoffs, then each contributes nothing to the public good,25
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implying that all of the agents are worse off than they would have been had they1

contributed everything to the public good.2

One way to resolve the above social dilemma is to establish an institution that3

realigns individual incentives so that each agent wants to contribute to the public4

good. Such institutions range from altering the preferences of the agents to be5

prosocial (“it takes a village”) to imposing a penalty for asocial behavior.6

Below we explore an institution that imposes a penalty, P , on any agent that does7

not contribute at least a threshold amount, T , to the public good. Such a Threshold-8

Penalty institution (TPI) can, if appropriately designed, alter an agent’s incentives9

enough so that fully contributing to the public good becomes incentive-compatible10

(Chaudhuri, 2011). Under a TPI, the payoff to agent i is11

πi = (ei − ci) + α

(
ci +

∑
i 6=j

cj

)
− φ(ci < T )P

where φ(ci < T ) is equal to 1 if ci < T and 0 otherwise.12

Given that any contribution to the public good is costly to the agent (since13

α < 1), in the presence of a TPI an agent considers only two possible behaviors:14

either contribute nothing or T to the public good. If an agent contributes nothing15

it may fail to meet the threshold and would be subject to the penalty. If the agent16

contributes the threshold it avoids the penalty, but loses (1 − α)T by paying the17

threshold versus adding T to its private good holdings. Thus, an agent’s optimal18

contribution, c∗, is19

c∗ =

0 if (1− α)T > P,

T otherwise.

To solve the social dilemma, we need c∗ = ei, which occurs when the TPI sets T = ei20

and P ≥ (1− α)T .21
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2.1 Social Choice Mechanisms (SCM)1

While the introduction of a suitable TPI seems like an easy solution1 to the social2

dilemma, the question we explore below is the difficulty of implementing such an3

institution. If the social system is controlled by, say, a benevolent overlord or if there4

is an easy way to form binding contracts among the agents, then creating a useful5

TPI is straightforward.6

A far more common means by which to create social policy is to allow the agents7

within the social system itself to self-organize using some form of a voting system.8

Could such a mechanism form a TPI that can resolve the social dilemma facing these9

agents?10

To analyze this issue, we consider a system in which N agents “vote” on the TPI11

that will be imposed on the group by having each agent submit its preferred T and12

P choices to a SCM. The SCM then aggregates these two sets of submitted values13

into the TPI’s final threshold and penalty values. Given this TPI, agents then decide14

on their public good contributions using the previously derived rule.15

We explore four prototypical SCMs: MEAN, MEDIAN, MAX, and MIN. Each16

SCM outputs a single value based on a set of N inputs. MEAN (the mean of the17

inputs) and MEDIAN (the median of the inputs) were chosen as they both represent18

a notion of averaging the inputs, though they differ in terms of the impact of outliers19

on the average. MEDIAN also captures the importance of the median voter in certain20

types of elections (Black, 1948; Downs, 1957). MAX and MIN are SCMs that output21

either the maximum (MAX) or minimum (MIN) of the inputs, and thus each pushes22

the social choice toward an extreme. Both MIN and MAX can be very sensitive to23

their inputs, since any agent in the group has the ability to alter the social choice in24

the extreme direction.25

1Below we ignore any difficulties associated with using a TPI, such as identifying and, if neces-
sary, penalizing each agent’s public contribution.
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2.2 Nash equilibria1

We first analyze the behavior of rational agents given by the Nash equilibria of the2

system. In the simple public goods game, a selfish agent treats the contributions to3

the public good of the other agents as exogenous, and therefore maximizes its own4

returns by holding on to its full endowment. In our modified public goods game,5

each agent first submits a desired threshold and penalty level to the SCM. The SCM6

then generates a TPI for the group, and each agent then contributes its payoff-7

maximizing amount to the public good. Insofar as the agent can influence the TPI,8

the contributions to the public good of the other agents are no longer exogenous,9

and the game becomes more strategically complex.10

One new element of the strategy in this game is an agent’s ability to understand its11

influence on the SCM. If the agent knows the values that the other agents will submit12

to the SCM—perhaps a difficult task depending on the size of the group and the flow13

of information—then the agent can calculate the exact influence of its submitted14

values on the TPI ceteris paribus. Even with more limited information, agents may15

have some insights into their influence on the TPI. For example, under MIN (MAX),16

an agent knows that if it submits a value lower (higher) than the current social17

value, it will be pivotal in the social choice. Under MEAN and MEDIAN, knowing18

the current social choice is sufficient to predict at least the potential direction of19

change.20

Once an agent recognizes its ability to alter the TPI, it should take the (now21

endogenous) reaction of the other agents to that new TPI into account. In the game22

without a TPI, an agent always wants to contribute nothing to the public good,23

so blindly transferring such reasoning into the new game would imply a desire for24

TPIs that do not compel public good contributions. However, more sophisticated25

agents should recognize that, since all agents optimize their contributions given the26

announced TPI, having a TPI that forces everyone, including itself, to contribute27

to the public good could lead to a higher payoff to the agent (as well as the other28

agents).29

In our analysis of the Nash equilibria, we assume that our rational agents have30

5



full knowledge about how their submissions to the SCM will alter the TPI ceteris1

paribus and that agents fully incorporate how that TPI will influence the public good2

contributions of the other agents. These assumptions should promote the ability of3

the rational system to implement TPIs that can resolve the social dilemma, thus4

providing a nice benchmark for this system.25

To simplify the rational analysis we restrict both the number of agents and the6

strategy space. We assume a system with five agents and constrain their choices to L7

possible, evenly spaced values between 0 and 1: {0.0, 1/(L− 1), 2/(L− 1), . . . , 1.0}.8

For example, if L = 3 agents can make contributions, or submit threshold and penalty9

values to the SCM, on {0.0, 0.5, 1.0}. Since we constrain possible contributions to10

discrete increments, agents must choose the best contribution given the constrained11

set, which may differ from the previously derived c∗. Therefore, agents will contribute12

either zero or the lowest contribution possible consistent with meeting the threshold.13

Each agent has L2 possible strategies that give all the various combinations of T and14

P that can be submitted to the SCM. This implies that with N agents, the payoff15

matrix will have L2N possible elements. Thus, with L = 3 and N = 5, each agent16

must choose among 9 possible strategies resulting in 59, 049 possible combinations17

of strategies across the five agents. The combinatorics quickly escalate as either L18

or N increases.19

Table 1 gives the best-response contribution for an agent facing the indicated20

TPI in a group of five agents when α = 0.5 and contributions are constrained to21

{0.0, 0.5, 1.0}. As seen in the table, the best responses break into various blocks.22

When either T or P are zero, agents wish to contribute zero as either the threshold23

is non binding, or it binds but the penalty is zero. The horizontal boundaries be-24

tween the blocks are driven by the discrete increments of possible contributions, for25

example, the best an agent can do to meet a threshold in the range of 0.1–0.5, is26

to contribute 0.5 (similarly, a contribution of 1.0 is required to meet thresholds be-27

tween 0.6–1.0). The vertical boundaries to the left of each block are tied to α. When28

α = 0.5, contributing 0.5 (1.0) to avoid violating a threshold is payoff improving as29

long as the penalty is above 0.25 (0.5). As α increases, the critical penalty values30

2Obviously, assumptions that lessen this possibility could also be considered.
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decrease and the boundaries move to the left. There may be TPIs where agents are1

indifferent between two contribution levels, for example, this occurs in Table 1 for2

thresholds between 0.6–1.0 and a penalty of 0.5.3

Table 1: Best Response Contributions. Agents are in a group of five facing a TPI with the given
threshold (row) and penalty (column) values, and are constrained to contribute either 0.0, 0.5, or
1.0. The interior of the table gives an agent’s best response contribution (coded as a = 0.0, b = 0.5,
and c = 1.0) when α = 0.5.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 a– a– a– a– a– a– a– a– a– a– a–
0.10 a– a– a– -b- -b- -b- -b- -b- -b- -b- -b-
0.20 a– a– a– -b- -b- -b- -b- -b- -b- -b- -b-
0.30 a– a– a– -b- -b- -b- -b- -b- -b- -b- -b-
0.40 a– a– a– -b- -b- -b- -b- -b- -b- -b- -b-
0.50 a– a– a– -b- -b- -b- -b- -b- -b- -b- -b-
0.60 a– a– a– a– a– a-c –c –c –c –c –c
0.70 a– a– a– a– a– a-c –c –c –c –c –c
0.80 a– a– a– a– a– a-c –c –c –c –c –c
0.90 a– a– a– a– a– a-c –c –c –c –c –c
1.00 a– a– a– a– a– a-c –c –c –c –c –c

A Nash equilibrium in this system occurs when, for each of the five agents, unilat-4

erally altering the values it sends to the SCM does not result in a TPI that leads to5

a higher payoff to that agent once every agent optimizes its contribution given that6

TPI. Table 2 provides some key properties of the Nash equilibria in this system across7

the four SCMs and various α values. Depending on the conditions, 40–89% of the8

cells in the payoff matrix represent Nash equilibria, with MEDIAN and MEAN near9

the lower end and MIN and MAX near the upper end of that range. All of MAX’s10

equilibria solve the free rider problem with contributions of 1.0. Under MAX, any11

agent has the ability to drive the threshold and penalty values to 1.0 and, given that12

the resulting TPI will maximize every agent’s public good contributions, doing so13

becomes a dominant strategy. MIN has 89% of its equilibria leading to contributions14

of 0.0. Under MIN, a single agent can only drive the threshold and penalty values15

down and, in essence, veto a binding TPI. Thus, MIN can easily get trapped in best-16
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response wells characterized by TPIs with low threshold or penalty values that do not1

compel contributions. When α < 0.5, only one of MIN’s 52,489 possible equilibria2

supports full contributions (with a threshold and penalty of 1.0) and when α ≥ 0.5,3

32 such equilibria emerge (with a threshold of 1.0 and penalties of either 1.0 or 0.5).4

Almost all of MEAN’s equilibria result in contributions of 0.5 when α = 0.3, and5

as α increases past 0.6 between 61–66% of the equilibria support full contributions.6

MEDIAN’s equilibria result in a modal contribution of 0.5 across the range of α, with7

some of this mass shifting to support full contributions as α increases (constituting8

around 34% of the equilibria when α ≥ 0.5). Around 20% of MEDIAN’s equilibria9

imply contributions of 0.0.10
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Table 2: Key properties of the Nash equilibria in a simple system with five agents and three
strategy levels, under various αs and SCMs. The SCM used to derive the threshold and penalty
levels given the submitted values is in the first column, the percent of the 59, 049 possible strategic
combinations that result in a Nash equilibrium is given in the second column, the expected mean
per-capita contribution assuming each possible equilibrium is equally likely is shown in the third
column, and the final column gives the frequency distribution of the mean per-capita contributions
(by percent of the total equilibria).

SCM %Nash Exp C Frequency of Contributions

α = 0.3
MAX 75.4% 1.00 1.0 (100.0%)
MEAN 39.5% 0.54 0.0 (1.1%), 0.5 (90.3%), 1.0 (8.6%)
MEDIAN 45.9% 0.44 0.0 (21.8%), 0.5 (68.6%), 1.0 (9.6%)
MIN 89.1% 0.01 0.0 (98.1%), 0.5 (1.9%), 1.0 (0.0%)
α = 0.4
MAX 75.4% 1.00 1.0 (100.0%)
MEAN 41.2% 0.68 0.0 (1.0%), 0.5 (61.2%), 1.0 (37.8%)
MEDIAN 45.9% 0.44 0.0 (21.8%), 0.5 (68.6%), 1.0 (9.6%)
MIN 89.1% 0.01 0.0 (98.1%), 0.5 (1.9%), 1.0 (0.0%)
α = 0.5
MAX 86.5% 1.00 1.0 (100.0%)
MEAN 43.7% 0.77 0.0 (0.9%), 0.5 (44.3%), 1.0 (54.7%)
MEDIAN 48.5% 0.58 0.0 (18.2%), 0.5 (47.6%), 1.0 (34.2%)
MIN 88.9% 0.01 0.0 (98.4%), 0.5 (1.6%), 1.0 (0.1%)
α = 0.6
MAX 86.5% 1.00 1.0 (100.0%)
MEAN 51.4% 0.83 0.0 (0.1%), 0.5 (39.3%), 1.0 (60.7%)
MEDIAN 48.5% 0.58 0.0 (18.2%), 0.5 (47.6%), 1.0 (34.2%)
MIN 88.9% 0.01 0.0 (98.4%), 0.5 (1.6%), 1.0 (0.1%)
α = 0.7
MAX 86.5% 1.00 1.0 (100.0%)
MEAN 56.2% 0.82 0.0 (0.1%), 0.5 (35.7%), 1.0 (64.2%)
MEDIAN 48.5% 0.58 0.0 (18.2%), 0.5 (47.6%), 1.0 (34.2%)
MIN 88.9% 0.01 0.0 (98.4%), 0.5 (1.6%), 1.0 (0.1%)
α = 0.8
MAX 86.5% 1.00 1.0 (100.0%)
MEAN 59.0% 0.83 0.5 (34.7%), 1.0 (65.3%)
MEDIAN 48.5% 0.58 0.0 (18.2%), 0.5 (47.6%), 1.0 (34.2%)
MIN 88.9% 0.01 0.0 (98.4%), 0.5 (1.6%), 1.0 (0.1%)
α = 0.9
MAX 86.5% 1.00 1.0 (100.0%)
MEAN 59.8% 0.83 0.5 (34.2%), 1.0 (65.8%)
MEDIAN 48.5% 0.58 0.0 (18.2%), 0.5 (47.6%), 1.0 (34.2%)
MIN 88.9% 0.01 0.0 (98.4%), 0.5 (1.6%), 1.0 (0.1%)
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Of central concern to this research is the ability of the social system to solve1

the underlying social dilemma. A key measure of this ability is given by the mean2

per-capita contribution of the agents. Table 3 gives the expected mean per-capita3

contribution across the various SCMs and αs, assuming that each Nash equilibrium is4

equally likely. Based on this measure, the SCMs can be ranked with MAX ¿ MEAN5

¿ MEDIAN ¿ MIN, with mean per-capita contributions of 1.0, 0.54-0.83, 0.44–0.58,6

and 0.01 respectively (with the higher values in these ranges being associated with7

larger αs). Thus, assuming rational agents being driven to Nash equilibria, the8

outcome of this self-organizing institutional system is dependent on the SCM used to9

generate the TPI, with MAX completely solving the free riding problem, MEAN and10

MEDIAN producing partial solutions, and MIN succumbing to the social dilemma11

with complete free riding in the vast majority of outcomes.12

Table 3: Expected mean per-capita contribution of Nash equilibria by SCM and α. The expected
mean per-capita contribution is calculated over the different SCM’s (rows) and αs (columns) possible
Nash equilibria assuming each equilibrium is equally likely. The system is composed of five agents,
constrained to contribution, threshold, and penalty values on {0.0, 0.5, 1.0}. The TPI is determined
by the outcome of the SCM given each agent’s submitted values for the threshold and penalty.
Agents then optimize their contributions given the resulting TPI.

0.30 0.40 0.50 0.60 0.70 0.80 0.90

MAX 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MEAN 0.538 0.684 0.769 0.803 0.821 0.826 0.829

MEDIAN 0.439 0.439 0.580 0.580 0.580 0.580 0.580
MIN 0.009 0.009 0.009 0.009 0.009 0.009 0.009

The different performance of the SCMs in preventing free riding is tied to a few13

factors. The performance of MAX and MIN at the extremes of possible contributions14

is not surprising given that these two SCMs tend to ratchet the resulting social choice15

in the extreme direction that each promotes. Thus, MAX produces binding TPIs16

that require high contributions, while MIN typically produces non-binding TPIs17

that discourage contributions. MEAN and MEDIAN result in outcomes that tend18

to occupy the middle range of potential contributions. MEAN performs better than19

MEDIAN for any given α, with MEDIAN being confined to a narrower band of20
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moderate outcomes between 0.44–0.58 than MEAN, which ranges ranges from 0.54–1

0.83. The different behavior that these two mechanisms engender in this system2

is somewhat surprising, as inputs are restricted to {0.0, 0.5, 1.0}, so the impact of3

possible outliers, a key difference between these two mechanisms, is limited. However,4

while the impact of outliers is limited, these latter two SCMS can generate very5

different outputs even when the inputs are restricted.6

Table 4 shows the frequency of particular outputs generated by a SCM when7

facing the ensemble of all possible input patterns of size five over three levels. Three8

of the SCMs3 are constrained to output values drawn from {0.0, 0.5, 1.0}, with MIN9

(MAX) having roughly 87% of its values at 0.0 (1.0) and 13% at 0.5, and MEDIAN10

having 58% of its outputs at 0.5, with the remainder being spread equally across the11

two extremes. MEAN has a more diffuse distribution across {0.0, 0.1, . . . , 0.9, 1.0}12

centered at 0.5.13

Table 4: The frequency of outputs generated by MEAN, MEDIAN, MAX, and MIN, given all
possible combinations of inputs (constrained to either 0.0, 0.5, or 1.0) across five agents.

Output MAX MEAN MED MIN

0.00 1 1 51 211
0.10 0 5 0 0
0.20 0 15 0 0
0.30 0 30 0 0
0.40 0 45 0 0
0.50 31 51 141 31
0.60 0 45 0 0
0.70 0 30 0 0
0.80 0 15 0 0
0.90 0 5 0 0
1.00 211 1 51 1

Based on the data in Table 4, the likelihood that a given contribution violates414

the threshold set by a SCM is shown in Table 5. Of particular interest here is the15

3This holds for MEDIAN as long as the number of agents is odd.
4Given that contributions are confined to {0.0, 0.5, 1.0}, when MEAN produces, say, a threshold

of 0.1, agents that want to avoid the penalty must contribute at least 0.5.
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difference between MEAN versus MEDIAN. MEAN results in a higher likelihood1

of violation for a given contribution level than MEDIAN does, which is consistent2

with the observation that MEAN results in TPIs that encourage higher contributions3

relative to MEDIAN. Also, the wider variety of possible penalty values produced by4

MEAN can also be important, as an agent’s willingness to violate a given threshold5

can be sensitive to small differences in penalties.6

Table 5: Frequency of a given contribution violating the threshold level set by a given SCM
assuming a random set of five, three-level inputs.

Contribution MAX MEAN MEDIAN MIN

0.0 99.6% 99.6% 79.0% 13.2%
0.5 86.8% 39.5% 21.0% 0.4%

The analysis of Nash equilibria in this system suggests that solving the public7

goods social dilemma by using a decentralized SCM may be more difficult than8

anticipated, even when there exists a Pareto superior TPI. The system is rife with9

equilibria and, depending on the SCM, many of these equilibria result in Pareto10

inferior outcomes. The two SCMs that yield to extreme values, not surprisingly,11

reinforce such extremes and either encourage social maximization in the case of MAX12

or result in free-riding in the case of MIN. The two SCMs more akin to democratic13

voting, MEAN and MEDIAN, favor intermediate levels of contributions, and even14

though they are structurally similar, they produce relatively different outcomes as α15

increases.16

Nash equilibrium entail a static analysis of the system, so having a more dynamic17

analysis of this system may be useful. A dynamic analysis may still result in the sys-18

tem settling on a Nash equilibrium, though it might favor particular equilibria versus19

the analysis above that assumed they were equally likely—equilibrium selection could20

potentially resolve the social dilemma. Moreover, the dynamics could exhibit stable21

points that are not Nash equilibrium.5 A dynamic system also provides an oppor-22

5One way to ameliorate a social dilemma is to develop reciprocity by repeatedly playing the
game with the same opponents (Fehr and Gächter, 2000). In the dynamic model here, agents are
randomly mixed together for each game neutralizing this avenue to cooperation.
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tunity to lessen our assumptions about each agent’s cognitive abilities and access to1

information. Finally, a dynamic model allows us to analyze larger-dimensional sys-2

tems that may exhibit different patterns than lower-dimensional ones. Given these3

opportunities, we next consider a dynamic system driven by adaptive agents.4

2.2.1 Adaptive Agents5

To explore the behavior of a more dynamic system, we consider adaptive agents.6

To model adaptive agents we use a simple genetic algorithm (Holland, 1975). Ge-7

netic algorithms use analogs of natural evolution to drive the artificial evolution of8

a population of agents. Thus, each agent in a population is exposed to a problem9

and receives a payoff (analogous to fitness in natural systems). The agents are then10

evolved using reproduction by performance (selection), that is, agents with higher11

payoffs are more likely to be reproduced. Members of the new population are sub-12

ject to some variation via “genetic operators,” in this case, a simple mutation of13

the strategic parameters. Genetic algorithms tend to identify good solutions to the14

underlying problem being explored and are also relatively robust to systems with15

nonlinear, noisy, and complex search spaces.16

The genetic algorithm used below has the following form. A population of 10017

agents must each adapt two strategic parameters that determine the threshold and18

penalty choices that the agent will submitted to the SCM. As in the analysis of the19

Nash equilibria above, agents are constrained to L levels of threshold and penalty20

values (as well as contribution amounts) in discrete increments of 1/(L − 1) on21

[0.0, 1.0]. At the start of the algorithm each agent’s two parameters are randomized22

on the stated interval. The population of agents is then evolved for twenty-five23

generations.6 At the start of each generation, agents are randomly drawn from the24

population (without replacement) and put into groups of size five. Each group then25

plays the public goods game defined above, with each agent submitting its threshold26

and penalty values to the SCM. Once the TPI is determined, each agent makes27

its best response contribution to the public good and receives its payoff.7 Agents28

6Adding more generations to the evolution did not significantly alter the results.
7We found that the evolving agents could easily adapt to contributing the optimal contribution
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participate in twenty such games during a given generation and accumulate the1

payoffs from each of these twenty games.2

At the end of each generation, a new population of 100 agents is created using3

selection and variation. For selection, two agents are randomly drawn (with replace-4

ment) from the population, and a copy of the one with the higher payoff is placed5

into the new population. This tournament selection process is performed 100 times,6

resulting in 100 agents reproduced from the old population biased by performance.7

To introduce some variation, each agent in the new population has a 25% chance of8

undergoing mutation. If an agent is mutated, one of its strategic parameters (either9

the threshold or penalty) was randomly chosen and altered by a uniformly chosen10

mutation amount drawn from {−1/(L− 1), 0, 1/(L− 1)} (if the resulting parameter11

is pushed outside of [0, 1] it is reset to the nearest boundary). Once the new popu-12

lation is finalized, a new generation begins and the process above is iterated. Data13

is collected in the twenty-fifth generation of each experiment, and each experiment14

is repeated for 10,000 trials.15

Table 6 gives the mean of the per-capita contribution levels observed in each16

group in the twenty-fifth generation of the algorithm across all 10,000 trials.8 This17

table is the adaptive analog to the Nash equilibria results given in Table 3. The18

obvious difference between these two approaches is that the adaptive system results19

in MEAN, MEDIAN, and MIN leading to much higher contributions to the public20

good. Adaptation nearly solves the free rider problem across all levels of α under the21

MEAN, MEDIAN, and MAX SCMs, whereas before this only occurred under MAX,22

with MEAN and MEDIAN leading to intermediate contribution levels.923

when facing a fixed T and P .
8In the adaptive system, each agent evolved the threshold and penalty values that it submitted

to the SCM. Across all levels of α, the mean of the MAX, MEAN, and MEDIAN values of the
threshold parameter were between 0.83–0.95, with MEDIAN at the top of that range, followed by
MEAN, and then MAX. The penalty parameters for these three SCMs bifurcated depending on α.
For α ≤ 0.5 the range of penalty values was similar to those of the threshold values, though both
MEAN and MEDIAN were near the upper end and MAX was near the lower end of the range. For
α > 0.5, the range of penalty values was between 0.62–0.84, with a similar pattern of the three
SCMs as before. MIN had thresholds around 0.67 for α ≤ 0.5 and around 0.98 for higher αs, with
penalties between 0.79–0.82 across all levels of α.

9In the Nash analysis, all of the equilibria for MAX had full contributions, while in the adaptive
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Recall that under MIN, out of the 52,489 possible equilibria, only 1 (for α < 0.5)1

or 32 (for α ≥ 0.5) support full contributions, with over 98% of the remaining2

equilibria leading to complete free riding, implying an expected contribution of about3

0.01. However, under adaptation, MIN achieves contributions of around 40% when4

α ≤ 0.5 and around 82% when α > 0.5.105

Table 6: Expected mean per-capita observed contribution of adaptive agents by SCM and α.
The behavior of the agents is governed by the genetic algorithm described in the text. The per-
capita public good contributions made across all of the groups in the twenty-fifth generation of
the algorithm were collected and averaged across 10,000 trials. Each group was composed of five
randomly chosen agents, constrained to contribution, threshold, and penalty values on {0.0, 0.5, 1.0}.
The group’s TPI is determined by the SCM given each agent’s submitted values for the threshold and
penalty, and agents optimize their contributions given the resulting TPI. Each agent participated
in twenty such groups during a given generation.

0.30 0.40 0.50 0.60 0.70 0.80 0.90

MAX 0.997 0.997 0.997 0.998 0.998 0.998 0.998
MEAN 0.989 0.993 0.995 0.996 0.996 0.997 0.997

MEDIAN 0.989 0.989 0.990 0.994 0.994 0.994 0.994
MIN 0.399 0.413 0.425 0.818 0.819 0.819 0.819

To understand better the behavior of the adaptive system, consider the system6

under the MIN SCM. Under MIN, almost all of the (many) Nash equilibria lead7

to contributions of zero. Notwithstanding this result, under adaptation the system8

tends toward moderate levels of contributions when α ≤ 0.5 and relatively high levels9

when α > 0.5. Recall that the accumulated payoffs that an agent receives during10

its interactions across its various groups within a given generation drive selection in11

the adaptive system. Under MIN, the TPI parameters are determined by the lowest12

values submitted by the agents. Given this, consider two agents, one of which submits13

high values for both the threshold and penalty and the other of which submits low14

values. When an agent with low values is placed in a group, its values prevail in the15

resulting TPI and all of the agents in that group react by not contributing—implying16

analysis the system does slightly worse, reflecting the impact of mutation on the agents.
10These bifurcated contribution levels are likely tied to the different number of possible full-

contribution equilibria (1 versus 32) as well as an algorithmic choice that, when agents are indifferent
between contribution levels, they choose the lower amount.

15



that each group member will receive a payoff of 1.0. Thus, agents that submit low1

values always receive a payoff of 1.0 in any game. When an agent with high values is2

placed in a group, one of two things can happen. If the agent is mixed with at least3

one low-value agent, the resulting TPI implies no contributions and payoffs of 1.04

to each agent. However, when the high-value agent is mixed with other high-value5

agents, the resulting TPI induces high contributions leading to payoffs of Nα > 1.06

to each agent. Thus, high-value agents will either get the same payoff as low-valued7

agents (when the group has low-value submissions) or a higher one (when the group8

has only high-valued submissions). Given this, selection will tend to favor high-value9

agents and push the system toward the higher-contributing equilibria. There are,10

of course, selective wells in MIN that can trap the system, for example, if all the11

agents have low submission values, then an agent with high values never ends up in12

an all-high-value group. Even in this case, genetic drift might allow more high-value13

agents to arise over time—since such agents always do at least as well as low-valued14

agents, if not better—potentially allowing the system to flip to a higher contribution15

level.16

Given that evolution has the ability to overcome MIN’s extreme behavior and17

produce low-levels of free riding, its ability to avoid free riding in the three less18

extreme SCMs is not surprising.19

As noted, the behavior of some of the SCMs in the evolutionary system depends20

on whether α ≤ 0.5. For example, for α ≤ 0.5, MIN generates thresholds around21

0.69 and penalties around 0.82, while for α > 0.5 the thresholds jump to around22

0.98 and penalties decline slightly to around 0.79. For MAX, while the thresholds23

remain around 0.83 throughout, penalties go from 0.83 for low to 0.62 for high αs.24

MEAN and MEDIAN also show declining penalties for higher αs. As α increases,25

for contributions of zero to remain optimal agents require either a higher threshold26

or a lower penalty, so the observed patterns are consistent with TPIs that promote27

contributions to the public good.1128

11The existence of the 0.5 α boundary is tied to the discrete nature of the contributions. For
all levels of α, a threshold of 0.5 is binding when penalties are between 0.35–0.5 thus, given the
discrete nature of contributions, this requires penalties of either 0.5 or 1.0. For thresholds of 1.0 to
be binding, α > 0.5 requires penalties of 0.5 or 1.0, while for α < 0.5 the required penalty is 1.0.
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We also considered the impact of group size on the adaptive system. We consid-1

ered groups of size 5, 10, 20, 25, and 5012 with strategies confined to {0.0, 0.1, . . . , 0.9, 1.0}.2

We re-scaled the αs so that the return from the public bank if everyone donated was3

constant across group size. For example, if α = 0.3 in a group size of 5, it became4

0.15 for a group size of 10, resulting in α ×GS = 1.5 in either case. We found that5

group size had little impact under MAX, with groups of all sizes maintaining dona-6

tions of around 1.0. The other three SCMs produced monotonically decreasing mean7

donations as group size increased above 5. For example, with a group size of 50 and8

α ×GS = 1.5, the mean donations were 0.63, 0.70, and 0.04 for MEAN, MEDIAN,9

and MIN respectively. These contribution levels are more akin to the those in the10

five-agent system with equally-probably Nash equilibria than the five-agent adaptive11

system. With large groups, the two extreme SCMs, MIN and MAX, are likely to12

achieve their extreme values as it takes just one bad apple in the case of MIN or one13

good peach in the case of MAX, to drive the system to either complete or no free14

riding, respectively. For MEAN and MEDIAN, larger group sizes tend to minimize15

the impact of any single agent on the outcome, thus an agent’s submissions to these16

SCMs have little relation to the resulting payoffs that the agent will receive, thus17

weakening the selective forces.1318

When α = 0.5 and the penalty is 0.5, agents are indifferent between contributing a threshold of 1.0
or contributing 0 and paying the penalty and in our implementation of the system agents choose
to contribute 0 in such cases. These various factors can account for the bifurcations we observe
around α = 0.5.

12These are all divisors of the population size of 100.
13We explored other parametric changes as well. For example, evolving the system for 50 gen-

erations instead of 25, resulted in a slight increase in mean donations under MEAN and MEDIAN.
Altering the population size from 100 to 200, made little difference. We also increasing the possi-
ble levels of strategic choices to eleven (implying choices on {0.0, 0.1, . . . , 0.9, 1.0}) versus the three
({0.0, 0.5, 1.0}) used in the previously analyzed five-agent model. Under Nash, we sampled the 167.6
million possible payoff cells 10 million times and found that the mean per-capita contributions were
similar to those in Table 3, with the only major difference being slightly higher contributions across
MEAN, MEDIAN, and MAX, while MIN’s contributions were confined to a narrower range across
α. Under the adaptive system with eleven levels and five agents, MAX, MEAN, and MEDIAN
behave very similar to what was observed in the three-level system shown in Table 6, while MIN
results in higher contributions in the range of 0.72–0.95 as α increases. These minor changes are
likely the result of finer grained strategic levels allowing more flexibility in TPI parametric choices.

17



2.2.2 Conclusions1

The ability to solve social dilemmas, by whatever means, is key if we are to confront2

some of society’s most pressing problems. While some social dilemmas have, on oc-3

casion, been solved by the introduction of various institutions, such solutions have4

typically involved relatively small groups and the creation of situation-specific insti-5

tutions (Ostrom, 1990; Fehr and Schurtenberger, 2018). The implementation of a6

more transferable institution—such as the threshold-penalty institution generated by7

the decentralized “votes” of the agents in the social system we explored here—could,8

if such a system can discover and maintain a useful institution, potentially provide9

a more general means by which to reduce the negative impacts of social dilemmas.10

To model such a system, we analyzed the behavior of four mechanisms to generate11

social choices, each of which took the votes of the individual agents in a group12

and aggregated them into the key parameters of the governing institution that is13

imposed on the group. These SCMs covered a broad swath of behavior, ranging14

from extreme mechanisms such as MAX and MIN designed to explore the limiting15

cases, to mechanism more closely associated with the usual notions of democratic16

voting systems such as MEDIAN and MEAN.17

Our results indicated that the SCM used to aggregate votes and form the final18

institution mattered. Depending on the analytic view and the underlying parameters19

that characterize the social system, the ability of a given SCM to create an effective20

institution that resolves the social dilemma differed in predictable ways.21

One branch of our analysis focused on the static behavior of the system as cap-22

tured by rational agents pursuing Nash equilibria. Such equilibria abound in this23

system. Under the two extreme SCMs, the equilibria were concentrated on insti-24

tutions that either solved the underlying social dilemma (MAX) or almost always25

resulted in complete free riding (MIN). MIN, in essence, gives each agent the abil-26

ity to veto a TPI that forces contributions to the public good, similar to many27

international climate change agreement efforts (Lal Pandey, 2014). Under the more28

voting-like SCMs, MEAN and MEDIAN, the system favored a wider variety of equi-29

libria that, on average, lead to partial contributions and hence partial solutions to30
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the social dilemma. Notwithstanding the structural similarities between MEAN and1

MEDIAN, we observed systematic differences in the system’s response to these two2

SCMs.3

An alternative analytic branch considered a dynamic version of the system driven4

by agents adapting their votes based on prior payoffs. When group size was relatively5

small, these adaptive agents evolved institutions that resulted in a better resolution6

of the social dilemma than one might expect given the proliferation of equilibria7

under rational agents. Even in worlds governed by MIN, where the vast majority of8

rational equilibria result in complete free riding, the system exhibited moderate to9

relatively high levels of contributions to the public good (depending on the return10

to public contributions, α). The other three SCMs were able to avoid almost all free11

riding (modulo the noise from mutation), a result that is not too surprising given12

MIN’s success.13

The adaptive system was able to solve the free-rider problem because agents14

advocating strong institutions (those that require large contributions if high penalties15

are to be avoided) have an inherent payoff advantage over more laissez-faire agents.16

This advantage arises because whenever laissez-faire agents are in a group, the weak17

institution that emerges results in relatively low contributions and individual payoffs.18

While agents advocating strong institutions cannot avoid such groupings, on occasion19

these latter agents are grouped together, and the resulting strong institution leads20

to both high contributions and individual payoffs. Given this, advocates of strong21

institutions will always do at least as well as, but likely better than, laissez-faire22

agents. However, as group size increases an agent’s influence on the final form of the23

institution wanes under all but the most extreme voting systems, and the system24

reverts to less productive outcomes.25

Thus, the two branches of our analysis suggest that the ability of agents in a26

social system to self-organize productive institutions that can avoid a social dilemma27

may be more difficult than intuition might suggest. Even in the simplified system28

explored above, where a seemingly obvious institutional solution exists, acquiring29

that institution may be difficult, however compelling it may be once it is established.30

Rational agents can succumb to a proliferation of possible equilibria, many of which31
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lead to inferior outcomes, and while adaptive agents may be able to evolve institutions1

that induce more promising outcomes, this ability diminishes as group size increases.2

These results suggest that deriving productive institutional solutions to social3

dilemmas may not be easily accomplished using the typical decentralized mechanisms4

for creating social choice. Given that social dilemmas lie at the heart of some of the5

most critical problems facing social systems, finding an alternative means to enact6

such institutions may be needed.7
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